Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gut ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754953

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has limited therapeutic options, particularly with immune checkpoint inhibitors. Highly chemoresistant 'stem-like' cells, known as cancer stem cells (CSCs), are implicated in PDAC aggressiveness. Thus, comprehending how this subset of cells evades the immune system is crucial for advancing novel therapies. DESIGN: We used the KPC mouse model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre) and primary tumour cell lines to investigate putative CSC populations. Transcriptomic analyses were conducted to pinpoint new genes involved in immune evasion. Overexpressing and knockout cell lines were established with lentiviral vectors. Subsequent in vitro coculture assays, in vivo mouse and zebrafish tumorigenesis studies, and in silico database approaches were performed. RESULTS: Using the KPC mouse model, we functionally confirmed a population of cells marked by EpCAM, Sca-1 and CD133 as authentic CSCs and investigated their transcriptional profile. Immune evasion signatures/genes, notably the gene peptidoglycan recognition protein 1 (PGLYRP1), were significantly overexpressed in these CSCs. Modulating PGLYRP1 impacted CSC immune evasion, affecting their resistance to macrophage-mediated and T-cell-mediated killing and their tumourigenesis in immunocompetent mice. Mechanistically, tumour necrosis factor alpha (TNFα)-regulated PGLYRP1 expression interferes with the immune tumour microenvironment (TME) landscape, promoting myeloid cell-derived immunosuppression and activated T-cell death. Importantly, these findings were not only replicated in human models, but clinically, secreted PGLYRP1 levels were significantly elevated in patients with PDAC. CONCLUSIONS: This study establishes PGLYRP1 as a novel CSC-associated marker crucial for immune evasion, particularly against macrophage phagocytosis and T-cell killing, presenting it as a promising target for PDAC immunotherapy.

2.
Mol Oncol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357786

RESUMO

Chromosomal instability (CIN) is a hallmark of cancer aggressiveness, providing genetic plasticity and tumor heterogeneity that allows the tumor to evolve and adapt to stress conditions. CIN is considered a cancer therapeutic biomarker because healthy cells do not exhibit CIN. Despite recent efforts to identify therapeutic strategies related to CIN, the results obtained have been very limited. CIN is characterized by a genetic signature where a collection of genes, mostly mitotic regulators, are overexpressed in CIN-positive tumors, providing aggressiveness and poor prognosis. We attempted to identify new therapeutic strategies related to CIN genes by performing a drug screen, using cells that individually express CIN-associated genes in an inducible manner. We find that the overexpression of targeting protein for Xklp2 (TPX2) enhances sensitivity to the proto-oncogene c-Src (SRC) inhibitor dasatinib due to activation of the Yes-associated protein 1 (YAP) pathway. Furthermore, using breast cancer data from The Cancer Genome Atlas (TCGA) and a cohort of cancer-derived patient samples, we find that both TPX2 overexpression and YAP activation are present in a significant percentage of cancer tumor samples and are associated with poor prognosis; therefore, they are putative biomarkers for selection for dasatinib therapy.

3.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37698938

RESUMO

Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1ß production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ciclo Celular/genética , Interleucina-1beta/genética , Camundongos Endogâmicos C57BL , Quinase 1 Polo-Like
4.
Front Cell Dev Biol ; 11: 1209136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342233

RESUMO

Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.

5.
Pharmaceutics ; 15(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111716

RESUMO

Rigosertib (ON-01910.Na) is a small-molecule member of the novel synthetic benzyl-styryl-sulfonate family. It is currently in phase III clinical trials for several myelodysplastic syndromes and leukemias and is therefore close to clinical translation. The clinical progress of rigosertib has been hampered by a lack of understanding of its mechanism of action, as it is currently considered a multi-target inhibitor. Rigosertib was first described as an inhibitor of the mitotic master regulator Polo-like kinase 1 (Plk1). However, in recent years, some studies have shown that rigosertib may also interact with the PI3K/Akt pathway, act as a Ras-Raf binding mimetic (altering the Ras signaling pathway), as a microtubule destabilizing agent, or as an activator of a stress-induced phospho-regulatory circuit that ultimately hyperphosphorylates and inactivates Ras signaling effectors. Understanding the mechanism of action of rigosertib has potential clinical implications worth exploring, as it may help to tailor cancer therapies and improve patient outcomes.

6.
Cell Death Differ ; 29(8): 1474-1485, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35058575

RESUMO

Alteration of centrosome function and dynamics results in major defects during chromosome segregation and is associated with primary autosomal microcephaly (MCPH). Despite the knowledge accumulated in the last few years, why some centrosomal defects specifically affect neural progenitors is not clear. We describe here that the centrosomal kinase PLK1 controls centrosome asymmetry and cell fate in neural progenitors during development. Gain- or loss-of-function mutations in Plk1, as well as deficiencies in the MCPH genes Cdk5rap2 (MCPH3) and Cep135 (MCPH8), lead to abnormal asymmetry in the centrosomes carrying the mother and daughter centriole in neural progenitors. However, whereas loss of MCPH proteins leads to increased centrosome asymmetry and microcephaly, deficient PLK1 activity results in reduced asymmetry and increased expansion of neural progenitors and cortical growth during mid-gestation. The combination of PLK1 and MCPH mutations results in increased microcephaly accompanied by more aggressive centrosomal and mitotic abnormalities. In addition to highlighting the delicate balance in the level and activity of centrosomal regulators, these data suggest that human PLK1, which maps to 16p12.1, may contribute to the neurodevelopmental defects associated with 16p11.2-p12.2 microdeletions and microduplications in children with developmental delay and dysmorphic features.


Assuntos
Proteínas de Ciclo Celular , Microcefalia , Células-Tronco Neurais , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Centrossomo/metabolismo , Criança , Segregação de Cromossomos , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
7.
Front Oncol ; 11: 752933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804941

RESUMO

Fanconi anemia (FA) is a disease of genomic instability and cancer. In addition to DNA damage repair, FA pathway proteins are now known to be critical for maintaining faithful chromosome segregation during mitosis. While impaired DNA damage repair has been studied extensively in FA-associated carcinogenesis in vivo, the oncogenic contribution of mitotic abnormalities secondary to FA pathway deficiency remains incompletely understood. To examine the role of mitotic dysregulation in FA pathway deficient malignancies, we genetically exacerbated the baseline mitotic defect in Fancc-/- mice by introducing heterozygosity of the key spindle assembly checkpoint regulator Mad2. Fancc-/-;Mad2+/- mice were viable, but died from acute myeloid leukemia (AML), thus recapitulating the high risk of myeloid malignancies in FA patients better than Fancc-/-mice. We utilized hematopoietic stem cell transplantation to propagate Fancc-/-; Mad2+/- AML in irradiated healthy mice to model FANCC-deficient AMLs arising in the non-FA population. Compared to cells from Fancc-/- mice, those from Fancc-/-;Mad2+/- mice demonstrated an increase in mitotic errors but equivalent DNA cross-linker hypersensitivity, indicating that the cancer phenotype of Fancc-/-;Mad2+/- mice results from error-prone cell division and not exacerbation of the DNA damage repair defect. We found that FANCC enhances targeting of endogenous MAD2 to prometaphase kinetochores, suggesting a mechanism for how FANCC-dependent regulation of the spindle assembly checkpoint prevents chromosome mis-segregation. Whole-exome sequencing revealed similarities between human FA-associated myelodysplastic syndrome (MDS)/AML and the AML that developed in Fancc-/-; Mad2+/- mice. Together, these data illuminate the role of mitotic dysregulation in FA-pathway deficient malignancies in vivo, show how FANCC adjusts the spindle assembly checkpoint rheostat by regulating MAD2 kinetochore targeting in cell cycle-dependent manner, and establish two new mouse models for preclinical studies of AML.

8.
Biomed Pharmacother ; 144: 112347, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700228

RESUMO

New therapeutic targets are revolutionizing colorectal cancer clinical management, opening new horizons in metastatic patients' outcome. Polo Like Kinase1 (PLK1) inhibitors have high potential as antitumoral agents, however, the emergence of drug resistance is a major challenge for their use in clinical practice. Overcoming this challenge represents a hot topic in current drug discovery research. BI2536-resistant colorectal cancer cell lines HT29R, RKOR, SW837R and HCT116R, were generated in vitro and validated by IG50 assays and xenografts models by the T/C ratio. Exons 1 and 2 of PLK1 gene were sequenced by Sanger method. AXL pathway, Epithelial-to-Mesenchymal transition (EMT) and Multidrug Resistance (MDR1) were studied by qPCR and western blot in resistant cells. Simvastatin as a re-sensitizer drug was tested in vitro and the drug combination strategies were validated in vitro and in vivo. PLK1 gene mutation R136G was found for RKOR. AXL pathway trough TWIST1 transcription factor was identified as one of the mechanisms involved in HT29R, SW837R and HCT116R lines, inducing EMT and upregulation of MDR1. Simvastatin was able to impair the mechanisms activated by adaptive resistance and its combination with BI2536 re-sensitized resistant cells in vitro and in vivo. Targeting the mevalonate pathway contributes to re-sensitizing BI2536-resistant cells in vitro and in vivo, raising as a new strategy for the clinical management of PLK1 inhibitors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Ácido Mevalônico/metabolismo , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Sinvastatina/farmacologia , Proteína 1 Relacionada a Twist/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Células HCT116 , Células HT29 , Humanos , Camundongos Nus , Mutação , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Proteína 1 Relacionada a Twist/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl , Quinase 1 Polo-Like
9.
Cell Death Differ ; 27(8): 2451-2467, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32080348

RESUMO

The cellular mechanisms controlling cell fate in self-renewal tissues remain unclear. Cell cycle failure often leads to an apoptosis anti-oncogenic response. We have inactivated Cdk1 or Polo-like-1 kinases, essential targets of the mitotic checkpoints, in the epithelia of skin and oral mucosa. Here, we show that inactivation of the mitotic kinases leading to polyploidy in vivo, produces a fully differentiated epithelium. Cells within the basal layer aberrantly differentiate and contain large or various nuclei. Freshly isolated KO cells were also differentiated and polyploid. However, sustained metaphase arrest downstream of the spindle anaphase checkpoint (SAC) due to abrogation of CDC20 (essential cofactor of anaphase-promoting complex), impaired squamous differentiation and resulted in apoptosis. Therefore, upon prolonged arrest keratinocytes need to slip beyond G2 or mitosis in order to initiate differentiation. The results altogether demonstrate that mitotic checkpoints drive squamous cell fate towards differentiation or apoptosis in response to genetic damage.


Assuntos
Apoptose , Diferenciação Celular , Epitélio/patologia , Fase G2 , Mitose , Animais , Proteína Quinase CDC2/metabolismo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Citocinese , Epiderme/patologia , Humanos , Hiperplasia , Camundongos , Poliploidia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quinase 1 Polo-Like
10.
Cell Rep ; 28(3): 597-604.e4, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315040

RESUMO

The recent availability of somatic haploid cell lines has provided a unique tool for genetic studies in mammals. However, the percentage of haploid cells rapidly decreases in these cell lines, which we recently showed is due to their overgrowth by diploid cells present in the cultures. Based on this property, we have now performed a phenotypic chemical screen in human haploid HAP1 cells aiming to identify compounds that facilitate the maintenance of haploid cells. Our top hit was 10-Deacetyl-baccatin-III (DAB), a chemical precursor in the synthesis of Taxol, which selects for haploid cells in HAP1 and mouse haploid embryonic stem cultures. Interestingly, DAB also enriches for diploid cells in mixed cultures of diploid and tetraploid cells, including in the colon cancer cell line DLD-1, revealing a general strategy for selecting cells with lower ploidy in mixed populations of mammalian cells.


Assuntos
Células-Tronco Embrionárias/citologia , Haploidia , Ensaios de Triagem em Larga Escala/métodos , Ploidias , Taxoides/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Separação Celular , Diploide , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Mitose/efeitos dos fármacos , Mitose/genética , Taxoides/química
11.
Genes (Basel) ; 10(3)2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862113

RESUMO

The master mitotic regulator, Polo-like kinase 1 (Plk1), is an essential gene for the correct execution of cell division. Plk1 has strong clinical relevance, as it is considered a bona fide cancer target, it is found overexpressed in a large collection of different cancer types and this tumoral overexpression often correlates with poor patient prognosis. All these data led the scientific community to historically consider Plk1 as an oncogene. Although there is a collection of scientific reports showing how Plk1 can contribute to tumor progression, recent data from different laboratories using mouse models, show that Plk1 can surprisingly play as a tumor suppressor. Therefore, the fact that Plk1 is an oncogene is now under debate. This review summarizes the proposed mechanisms by which Plk1 can play as an oncogene or as a tumor suppressor, and extrapolates this information to clinical features.


Assuntos
Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Humanos , Mitose , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quinase 1 Polo-Like
12.
Nat Commun ; 9(1): 3012, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30069007

RESUMO

Polo-like kinase 1 (Plk1) is overexpressed in a wide spectrum of human tumors, being frequently considered as an oncogene and an attractive cancer target. However, its contribution to tumor development is unclear. Using a new inducible knock-in mouse model we report here that Plk1 overexpression results in abnormal chromosome segregation and cytokinesis, generating polyploid cells with reduced proliferative potential. Mechanistically, these cytokinesis defects correlate with defective loading of Cep55 and ESCRT complexes to the abscission bridge, in a Plk1 kinase-dependent manner. In vivo, Plk1 overexpression prevents the development of Kras-induced and Her2-induced mammary gland tumors, in the presence of increased rates of chromosome instability. In patients, Plk1 overexpression correlates with improved survival in specific breast cancer subtypes. Therefore, despite the therapeutic benefits of inhibiting Plk1 due to its essential role in tumor cell cycles, Plk1 overexpression has tumor-suppressive properties by perturbing mitotic progression and cytokinesis.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/metabolismo , Instabilidade Cromossômica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Centrossomo/metabolismo , Segregação de Cromossomos , Citocinese , Modelos Animais de Doenças , Embrião de Mamíferos/citologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Oncogenes , Quinase 1 Polo-Like
13.
Nat Med ; 23(8): 964-974, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28692064

RESUMO

Polo-like kinase 1 (PLK1), an essential regulator of cell division, is currently undergoing clinical evaluation as a target for cancer therapy. We report an unexpected function of Plk1 in sustaining cardiovascular homeostasis. Plk1 haploinsufficiency in mice did not induce obvious cell proliferation defects but did result in arterial structural alterations, which frequently led to aortic rupture and death. Specific ablation of Plk1 in vascular smooth muscle cells (VSMCs) led to reduced arterial elasticity, hypotension, and an impaired arterial response to angiotensin II in vivo. Mechanistically, we found that Plk1 regulated angiotensin II-dependent activation of RhoA and actomyosin dynamics in VSMCs in a mitosis-independent manner. This regulation depended on Plk1 kinase activity, and the administration of small-molecule Plk1 inhibitors to angiotensin II-treated mice led to reduced arterial fitness and an elevated risk of aneurysm and aortic rupture. We thus conclude that a partial reduction of Plk1 activity that does not block cell division can nevertheless impair aortic homeostasis. Our findings have potentially important implications for current approaches aimed at PLK1 inhibition for cancer therapy.


Assuntos
Angiotensina II/metabolismo , Aneurisma Aórtico/genética , Ruptura Aórtica/genética , Proteínas de Ciclo Celular/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Aorta/metabolismo , Aorta/ultraestrutura , Aneurisma Aórtico/metabolismo , Ruptura Aórtica/metabolismo , Pressão Sanguínea , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Imunofluorescência , Técnicas de Silenciamento de Genes , Haploinsuficiência , Homeostase/genética , Hipotensão/genética , Immunoblotting , Camundongos , Microscopia Eletrônica de Transmissão , Mitose , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Rigidez Vascular/genética , Proteína rhoA de Ligação ao GTP , Quinase 1 Polo-Like
14.
Bioessays ; 38 Suppl 1: S96-S106, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27417127

RESUMO

Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays multiple and essential roles during the cell division cycle. Its inhibition in cultured cells leads to severe mitotic aberrancies and cell death. Whereas previous reports suggested that Plk1 depletion in mice leads to a non-mitotic arrest in early embryos, we show here that the bi-allelic Plk1 depletion in mice certainly results in embryonic lethality due to extensive mitotic aberrations at the morula stage, including multi- and mono-polar spindles, impaired chromosome segregation and cytokinesis failure. In addition, the conditional depletion of Plk1 during mid-gestation leads also to severe mitotic aberrancies. Our data also confirms that Plk1 is completely dispensable for mitotic entry in vivo. On the other hand, Plk1 haploinsufficient mice are viable, and Plk1-heterozygous fibroblasts do not harbor any cell cycle alterations. Plk1 is overexpressed in many human tumors, suggesting a therapeutic benefit of inhibiting Plk1, and specific small-molecule inhibitors for this kinase are now being evaluated in clinical trials. Therefore, the different Plk1 mouse models here presented are a valuable tool to reexamine the relevance of the mitotic kinase Plk1 during mammalian development and animal physiology.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Segregação de Cromossomos , Citocinese , Mitose , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Fuso Acromático/metabolismo , Animais , Feminino , Masculino , Camundongos , Fuso Acromático/fisiologia , Quinase 1 Polo-Like
15.
Nat Commun ; 7: 11389, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27091106

RESUMO

Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the dynamics of microtubules and CD3ζ-bearing vesicles at the IS. The absence of Aurora A activity also impairs the activation of early signalling molecules downstream of the TCR and the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the propagation of the TCR activation signal.


Assuntos
Aurora Quinase A/genética , Vesículas Citoplasmáticas/imunologia , Ativação Linfocitária/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/imunologia , Azepinas/farmacologia , Complexo CD3/genética , Complexo CD3/imunologia , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/ultraestrutura , Feminino , Regulação da Expressão Gênica , Humanos , Sinapses Imunológicas/efeitos dos fármacos , Sinapses Imunológicas/genética , Interleucina-2/genética , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Ativação Linfocitária/efeitos dos fármacos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Microtúbulos/efeitos dos fármacos , Microtúbulos/imunologia , Microtúbulos/ultraestrutura , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/ultraestrutura
16.
Mol Cell Biol ; 35(20): 3566-78, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26240282

RESUMO

Aurora kinase B, one of the three members of the mammalian Aurora kinase family, is the catalytic component of the chromosomal passenger complex, an essential regulator of chromosome segregation in mitosis. Aurora B is overexpressed in human tumors although whether this kinase may function as an oncogene in vivo is not established. Here, we report a new mouse model in which expression of the endogenous Aurkb locus can be induced in vitro and in vivo. Overexpression of Aurora B in cultured cells induces defective chromosome segregation and aneuploidy. Long-term overexpression of Aurora B in vivo results in aneuploidy and the development of multiple spontaneous tumors in adult mice, including a high incidence of lymphomas. Overexpression of Aurora B also results in a reduced DNA damage response and decreased levels of the p53 target p21(Cip1) in vitro and in vivo, in line with an inverse correlation between Aurora B and p21(Cip1) expression in human leukemias. Thus, overexpression of Aurora B may contribute to tumor formation not only by inducing chromosomal instability but also by suppressing the function of the cell cycle inhibitor p21(Cip1).


Assuntos
Aneuploidia , Aurora Quinase B/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Inativação Gênica , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
17.
Blood ; 126(14): 1707-14, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26185128

RESUMO

Polyploidization in megakaryocytes is achieved by endomitosis, a specialized cell cycle in which DNA replication is followed by aberrant mitosis. Typical mitotic regulators such as Aurora kinases or Cdk1 are dispensable for megakaryocyte maturation, and inhibition of mitotic kinases may in fact promote megakaryocyte maturation. However, we show here that Polo-like kinase 1 (Plk1) is required for endomitosis, and ablation of the Plk1 gene in megakaryocytes results in defective polyploidization accompanied by mitotic arrest and cell death. Lack of Plk1 results in defective centrosome maturation and aberrant spindle pole formation, thus impairing the formation of multiple poles typically found in megakaryocytes. In these conditions, megakaryocytes arrest for a long time in mitosis and frequently die. Mitotic arrest in wild-type megakaryocytes treated with Plk1 inhibitors or Plk1-null cells is triggered by the spindle assembly checkpoint (SAC), and can be rescued in the presence of SAC inhibitors. These data suggest that, despite the dispensability of proper chromosome segregation in megakaryocytes, an endomitotic SAC is activated in these cells upon Plk1 inhibition. SAC activation results in defective maturation of megakaryocytes and cell death, thus raising a note of caution in the use of Plk1 inhibitors in therapeutic strategies based on polyploidization regulators.


Assuntos
Proteínas de Ciclo Celular/deficiência , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Megacariócitos/patologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Proto-Oncogênicas/deficiência , Trombocitopenia/metabolismo , Animais , Diferenciação Celular/fisiologia , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Knockout , Quinase 1 Polo-Like
18.
Nat Cell Biol ; 16(6): 504-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24875738

RESUMO

Despite the widespread occurrence of aneuploidy in cancer cells, the molecular causes for chromosomal instability are not well established. Cyclin B2 is now shown to control a pathway - involving the centrosomal kinases aurora A and Plk1 and the tumour suppressor p53 - the alteration of which causes defective centrosome separation, aneuploidy and tumour development.


Assuntos
Centrossomo/metabolismo , Segregação de Cromossomos , Ciclina B2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Feminino , Masculino
19.
ACS Nano ; 7(9): 7483-94, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23941353

RESUMO

The interaction of nanoscaled materials with biological systems is currently the focus of a fast-growing area of investigation. Though many nanoparticles interact with cells without acute toxic responses, amino-modified polystyrene nanoparticles are known to induce cell death. We have found that by lowering their dose, cell death remains low for several days while, interestingly, cell cycle progression is arrested. In this scenario, nanoparticle uptake, which we have recently shown to be affected by cell cycle progression, develops differently over time due to the absence of cell division. This suggests that the same nanoparticles can trigger different pathways depending on exposure conditions and the dose accumulated.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Nanopartículas/toxicidade , Nitrogênio/química , Nitrogênio/toxicidade , Poliestirenos/química , Poliestirenos/toxicidade , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Nanopartículas/química , Mucosa Respiratória/fisiologia
20.
Mol Cell ; 48(5): 681-91, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23103253

RESUMO

The mammalian target of rapamycin (mTOR) pathway, which is essential for cell proliferation, is repressed in certain cell types in hypoxia. However, hypoxia-inducible factor 2α (HIF2α) can act as a proliferation-promoting factor in some biological settings. This paradoxical situation led us to study whether HIF2α has a specific effect on mTORC1 regulation. Here we show that activation of the HIF2α pathway increases mTORC1 activity by upregulating expression of the amino acid carrier SLC7A5. At the molecular level we also show that HIF2α binds to the Slc7a5 proximal promoter. Our findings identify a link between the oxygen-sensing HIF2α pathway and mTORC1 regulation, revealing the molecular basis of the tumor-promoting properties of HIF2α in von Hippel-Lindau-deficient cells. We also describe relevant physiological scenarios, including those that occur in liver and lung tissue, wherein HIF2α or low-oxygen tension drive mTORC1 activity and SLC7A5 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Proteínas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Fígado/metabolismo , Pulmão/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Camundongos SCID , Complexos Multiproteicos , Transplante de Neoplasias , Regiões Promotoras Genéticas , Proteínas/genética , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR , Fatores de Tempo , Transfecção , Carga Tumoral , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA